Автономная некоммерческая профессиональная образовательная организация «Межрегиональный медицинский колледж»

Комплект контрольно – оценочных средств по дисциплине

ОП.03 «Аналитическая химия и техника лабораторных работ» программы подготовки специалистов среднего звена (ППССЗ)

по специальности СПО

32.02.01 Медико-профилактическое дело

на базе среднего общего образования

(задания для текущего контроля и промежуточной аттестации)

очная форма обучения

Одобрено: на заседании ЦМК ОП цикла протокол №20\3 от «7» февраля 2024 г. Председатель ЦМК ОП цикла

Н.Ю.Москаленко

УТВЕРЖДАЮ: Заведующая УМО ЖПОО «ММК»

«7» февраля 2024 года

Н.С. Сикорская

Комплект КОС разработан на основе Федерального государственного образовательного стандарта по специальности 32.02.01. Медико-профилактическое дело базовой подготовки и рабочей программы учебной дисциплины ОП.03 «Аналитическая химия и техника лабораторных работ».

P	a3	pa	б	OT	ЧИ	к:
---	----	----	---	----	----	----

 АНПОО «ММК»
 преподаватель
 А.С.Москалик

 (занимаемая должность)
 (фамилия и инициалы)

Комплект контрольно-оценочных средств учебной дисциплины ОП.03 «Аналитическая химия и техника лабораторных работ» разработан на основе рабочей программы учебной дисциплины ОП.03 «Аналитическая химия и техника лабораторных работ», основной профессиональной образовательной программы подготовки специалистов среднего звена по специальности 32.02.01 Медико-профилактическое дело, В соответствии c Федеральным государственным образовательным стандартом среднего профессионального образования по специальности 32.02.01 Медико-профилактическое дело, утвержденного приказом Минпросвещения России от 18 июля 2022 г. №570 «Об утверждении федерального государственного образовательного стандарта среднего профессионального образования по специальности 32.02.01 Медикопрофилактическое дело»

Организация-разработчик: Автономная некоммерческая профессиональная образовательная организация «Межрегиональный медицинский колледж»

СОДЕРЖАНИЕ

1.	Паспорт комплекта КОС	5
2.	Оценка освоения дисциплины	11
3.	Комплект КОС текущего контроля	13
4.	Комплект КОС промежуточной аттестации	24

1. Паспорт комплекта контроль-оценочных средств учебной дисциплины

Комплект контрольно-оценочных средств (далее КОС) предназначен для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины ОП.03 «Аналитическая химия и техника лабораторных работ» программы подготовки специалистов среднего звена (далее ППССЗ) по специальности 32.02.01 Медикопрофилактическое дело базовой подготовки.

В результате освоения учебной дисциплины Аналитическая химия и техника лабораторных работ студент должен уметь:

Применять теоретические и практические знания в области аналитической химии и ее прикладных аспектов;

проводить самостоятельный поиск аналитической информации с использованием различных источников;

использовать современные компьютерные технологии для обработки и передачи аналитической информации;

самостоятельно приобретать новые знания по дисциплине анализировать их; уметь логически верно, аргументировано и ясно строить устную и письменную речь;

ориентироваться в основных аналитических и метрологических характеристиках методов анализа;

обладать навыками проведения химического анализа;

обладать навыками работы на современном стандартном оборудовании, применяемом в аналитических и физико-химических исследованиях;

владеть методами безопасной работы в химической лаборатории и обращения с химическими материалами с учетом их физических и химических свойств, способностью проводить оценку возможных рисков

В результате освоения учебной дисциплины студент

должен знать:

Основы химического анализа,

принципы пробоотбора,

типы химических реакций и процессов в аналитической химии;

основные методы количественного анализа;

номенклатура информационных источников, применяемых в профессиональной деятельности;

формат оформления результатов поиска информации;

условия профессиональной деятельности и зоны риска физического здоровья для специальности;

основные законы аналитической химии;

алгоритмы выполнения работ в профессиональной и смежных областях; виды и технология проведения основных лабораторных физико-химических исследований

В результате освоения учебной дисциплины у обучающегося формируются следующие компетенции:

ОК 01 Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам

ОК 02 Использовать современные средства поиска, анализа и интерпретации информации, и информационные технологии для выполнения задач профессиональной деятельности

ОК 04 Эффективно взаимодействовать и работать в коллективе и команде

ОК 08 Использовать средства физической культуры для сохранения и укрепления здоровья в процессе профессиональной деятельности и поддержания необходимого уровня физической подготовленности

ОК 09 Пользоваться профессиональной документацией на государственном и иностранном языках

ПК 1.3 Проводить отбор проб (образцов) с объектов окружающей среды и инструментальные измерения физических факторов ионизирующей и неионизирующей природы для гигиенической оценки опасности среды обитания для здоровья человека

Контроль и оценка результатов освоения дисциплины осуществляется преподавателем в процессе проведения практических занятий, устных и письменных опросов, тестирования, выполнения обучающимися индивидуальных заданий, а также во время проведения промежуточной аттестации по дисциплине.

Результаты обучения	Критерии оценки	Методы оценки
Знания:	Владеет знаниями о	
Основы химического анализа,	правилах безопасной	Тестирование. Устный опрос.
принципы пробоотбора,	работы в санитарно-	Письменный опрос.
типы химических реакций и	химической лаборатории;	Решение профессионально-
процессов в аналитической химии;	дает характеристику видам и	ориентированных кейсов.
основные методы количественного	технологиям проведения	Экзамен
анализа;	основных лабораторных	
номенклатура информационных	физико-химических	
источников, применяемых в	исследований;	
профессиональной деятельности;	демонстрирует знание	
формат оформления результатов	требований к отбору проб	
поиска информации;	(образцов) с объектов	
условия профессиональной	окружающей среды;	
деятельности и зоны риска	владеет знаниями оценки	
физического здоровья для	результатов решения задач	
специальности;	профессиональной	
основные законы аналитической	деятельности;	
химии;	владеет знаниями	
алгоритмы выполнения работ в	актуальных нормативно-	
профессиональной и смежных	правовых документов в	
областях;	профессиональной	

виды и технология проведения	деятельности	
основных лабораторных физико-		
химических исследований		

Умения: Применять теоретические И практические области знания аналитической химии и ее прикладных аспектов; самостоятельный проводить поиск информации аналитической использованием различных источников; использовать современные компьютерные технологии ДЛЯ обработки и передачи аналитической информации; приобретать самостоятельно новые знания по дисциплине анализировать их; логически верно, уметь аргументировано и ясно строить устную и письменную речь; ориентироваться В основных аналитических метрологических И характеристиках методов анализа; обладать проведения навыками химического анализа; обладать работы навыками на современном стандартном оборудовании, применяемом В

Демонстрирует алгоритмы работ выполнения профессиональной области; проводит самостоятельный поиск аналитической информации использованием различных источников; демонстрирует точность, правильность, полноту оформления документации ПО анализу с химическому использованием информационных технологий; ориентируется в основных аналитических И метрологических характеристиках методов анализа; владеет методами безопасной работы химической лаборатории

Экспертное наблюдение за ходом выполнения практической работы. Оценка результатов выполнения практической работы.

аналитических и физико-химических	
исследованиях;	
владеть методами безопасной работы в	
химической лаборатории и обращения с	
химическими материалами с учетом их	
физических и химических свойств,	
способностью проводить оценку	
возможных рисков.	

2. Оценка освоения дисциплины

2.1. Контроль и оценка освоения дисциплины по темам (разделам)

Результаты				Наименование контрольно- оценочного средства		
обучения (освоенные умения, усвоенные знания)	ПК, ОК	Наименование темы	Уровень освоения темы	Текущий контроль	Промежуточная аттестация	
3: 3,4,5,6 Y: 1,2,3,4	ОК 01. ОК 02. ОК 04. ОК 08. ОК 09. ПК 1.3.	Раздел 1. Теоретические основы аналитической химии	2	Устный опрос тестирование	Экзамен	
3: 1,2,3 Y: 1-4	ОК 01. ОК 02. ОК 04. ОК 08. ОК 09. ПК 1.3.	Раздел 2. Основы качественного анализа	2	Устный опрос тестирование	Экзамен	
3: 3,4,5,6 У: 1,2,3,4	ОК 01. ОК 02. ОК 04. ОК 08. ОК 09. ПК 1.3.	Раздел 3. Основы количественного анализа	2	Устный опрос тестирование	Экзамен	
3: 3,4,5,6 У: 1,2,3,4	OK 01. OK 02. OK 04. OK 08.	Раздел 4. Физико-химические методы анализа	2	Устный опрос тестирование	Экзамен	

	_	_	
ОК 09.			
ПК 1.3.			

Формы промежуточной аттестации по учебной дисциплине

Учебная дисциплина	Формы промежуточной аттестации
Аналитическая химия и техника	Экзамен
лабораторных работ	

3. Комплект контрольно-оценочных средств текущего контроля Тестовые задания для контроля знаний

Задание: выберите правильный(ые) ответ(ы).

1. Что такое водородный показатель?
1. отрицательный десятичный логарифм молярной концентрации ионов водорода;
2. концентрация ионов водорода;
3. логарифм концентрации ионов водорода;
4. сумма концентраций ионов водорода и гидроксид-ионов
2. рН 0,1 М раствора хлороводородной кислоты равен:
1. 4; 2. 3; 3. 2; 4. 1.
3. Значение рН 0,01 М раствора хлороводородной кислоты равно:
1. 4;
2. 3;
3. 2;
4. 1
4. Согласно кислотно-основной классификации все катионы делят:
1. на 3 группы;
2. на 2 группы;
3. на 4 группы;
4. на 6 групп.
5. К первой аналитической группе катионов по кислотно-основной классификации относятся катионы:
1. магния, калия, кальция;
2. алюминия, железа(II), хрома(III);
3. аммония, калия, натрия, лития;
4. кобальта(II), никеля(II), ртути(II)
6. Ко второй аналитической группе катионов по кислотно-основной классификации относятся катионы
1. серебра, свинца, ртути(I);

- 2. аммония, калия, кобальта(II);
- 3. магния, марганца(II), лития;
- 4. железа(II), ртути(II), никеля(II).

7. По кислотно-основной классификации к третьей аналитической группе катионов относятся катионы:

- 1. натрия, серебра, калия;
- 2. бария, кальция, стронция;
- 3. магния, висмута(III), марганца(III);
- 4. свинца, кобальта(II), меди(II).

8. По кислотно-основной классификации к четвертой аналитической группе катионов относятся:

- 1. ионы калия, магния, бария;
- 2. ионы алюминия, хрома(III), цинка;
- 3. ионы меди(II), кобальта(II), никеля(II);
- 4. ионы натрия, лития, марганца(II).

9. Групповым реактивом является раствор щелочи в присутствии пероксида водорода для:

- 1. Катионов второй аналитической группы;
- 2. Катионов первой аналитической группы;
- 3. Катионов четвертой аналитической группы;
- 4. Катионов третьей аналитической группы

10. К пятой аналитической группе катионов по кислотно-основной классификации относятся катионы:

- 1. натрия, аммония, магния;
- 2. натрия, магния, кобальта(II) и никеля(II);
- 3. магния, марганца(II), железа(III), железа(III), висмута(III), а также сурьма(III) и сурьма(V);
- 4. железа(III), алюминия, хрома(III), натрия.

11. К шестой аналитической группе катионов по кислотно-основной классификации относятся катионы:

- 1. кобальта(Π), никеля(Π), кадмия, меди(Π), ртути(Π);
- 2. кобальта(II), меди(II), марганца(II), магния;
- 3. никеля(II), кадмия, калия, аммония;

4. бария, алюминия, никеля(II).

12. На сколько аналитических групп делятся анионы по окислительно-восстановительным свойствам?

- 1. 2 группы;
- 2. 3 группы;
- 3. 4 группы;
- 4. 5 групп

13. Для обнаружения анионов первой аналитической группы используются реактивы:

- 1. раствор хлорида натрия;
- 2. раствор хлорида бария в нейтральной среде;
- 3. раствор хлорида бария в кислой среде;
- 4. раствор нитрата серебра в кислой среде.

14. Для обнаружения анионов второй аналитической группы (хлорид, бромид, иодид, сульфид, бромат, иодат) используются реактивы:

- 1. раствор хлорида бария в кислой среде;
- 2. раствор хлорида бария в нейтральной среде;
- 3. раствор нитрата серебра в щелочной среде;
- 4. раствор нитрата серебра в кислой среде.

15. Групповым реагентом на катионы натрия, калия, лития, аммония является:

- 1. дитизон;
- 2. винная кислота;
- 3. уротропин;
- 4. нет группового реагента

16. Амфотерные свойства проявляют осадки гидроксидов:

- 1. цинка;
- 2. xpомa(III);
- 3. никеля(II);
- 4. висмута.

17. Ионы ртути(II) восстанавливаются до металлической ртути на пластинке из:

- 1. меди;
- 2. золота;
- 3. серебра;
- 4. нет верного ответа.

18. Катионы кальция, бария и натрия относятся к катионам:

- 1. второй аналитической группы катионов;
- 2. третьей аналитической группы катионов;
- 3. шестой группы катионов;
- 4. нет верного ответа.

19. Осадок «берлинской лазури» образуется при взаимодействии катионов железа(III):

- 1. с гексацианоферратом(II) калия;
- 2. с гексацианоферратом(III) калия;
- 3. с тиоцианатом калия;
- 4. нет верного ответа.

20. Для растворения металлов применяют:

- 1. хлороводородную кислоту;
- 2. концентрированную серную кислоту;
- 3. царскую водку;
- 4. диметилформамид.

21. При гравиметрическом определении железа(III) по реакции образования гидроксида железа(III) гравиметрической формой является:

- 1. гидроксид железа(III);
- 2. оксид железа(III);
- 3. оксид железа(II);
- 4. нет правильного ответа

22. Титр раствора – это:

- 1. число граммов растворенного вещества в 1 л раствора;
- 2. число граммов растворенного вещества в 1 мл раствора;
- 3. число молей растворенного вещества в 1 мл раствора;
- 4. число молей растворенного вещества в 1 л раствора.

23. К основным приемам (способам) титрования относятся:

- 1. прямое титрование;
- 2. повторное титрование;
- 3. обратное титрование;
- 4. титрование по Фишеру.

24. В титриметрических методах применяются:

- 1. любые химические реакции;
- 2. реакции, удовлетворяющие основным требованиям;
- 3. те же реакции, что и в гравиметрическом анализе;
- 4. нет правильного ответа.

25. Кривые титрования изображают графическую зависимость

- 1. концентрации определяемого вещества от объема титранта;
- 2. концентрации определяемого вещества от степени оттитрованности;
- 3. оптической плотности раствора от объема добавленного титранта;
- 4. нет верного ответа.

26. В титриметрических методах применяются индикаторы:

- 1. кислотно-основные;
- 2. окислительно-восстановительные:
- 3. бромид калия;
- 4. уксусная кислота

27. В качестве рабочих растворов (титрантов) в методах кислотно-основного титрования применяют:

- 1. раствор серной кислоты;
- 2. раствор аммиака;

- 3. раствор гидроксида натрия;
- 4. раствор азотной кислоты.

28. Точку конца титрования в кислотно-основном титровании фиксируют:

- 1. безиндикаторным методом;
- 2. с применением индикаторов;
- 3. физико-химическим методом;
- 4. методом Мора.

29. Ацидиметрия относится к методам:

- 1. оксидиметрического титрования;
- 2. кислотно-основного титрования;
- 3. химического анализа;
- 4. нет верного ответа.

30. В ацидиметрии в качестве титрантов используют:

- 1. H₂SO₄;
- 2. HCl;
- 3. CH₃COOH;
- 4. NaOH.

31. Титрование по методу Мора проводят:

- 1. в кислой среде;
- 2. в нейтральной среде;
- 3. в щелочной среде;
- 4. нет верного ответа.

32. В методе Мора используют индикатор:

- 1. тиоцианат железа(III);
- 2. хромат калия;
- 3. дифенилкарбазид;
- 4. дифениламин.

33. Для установления концентрации нитрата серебра используют:

- 1. сульфат натрия;
- 2. хлорид натрия;
- 3. хлорид аммония;
- 4. нитрат аммония.

34. Методом Фольгарда определяют:

- 1. ионы серебра;
- 2. хлориды, бромиды;
- 3. ионы ртути(I);
- 4. ионы железа(III).

35. Титрование с адсорбционными индикаторами проводят по методу:

- 1. Mopa;
- 2. Фаянса;
- 3. Фольгарда;
- 4. нет верного ответа.

36. Потенциометрия основана на измерении:

- 1. зависимости электродного потенциала от активности определяемого иона;
- 2. силы диффузионного тока;
- 3. электропроводности;
- 4. количества электричества

37. Оптимальным объектом спектрофотометрического определения являются:

- 1. порошки;
- 2. растворы;
- 3. взвеси;
- 4. коллоиды.

38. Методы анализа, основанные на взаимодействии электромагнитного излучения с веществом, называются:

- 1. хроматографические;
- 2. спектроскопические;
- 3. электрохимические;
- 4. масс-спектрометрические.

39. К физико-химическим методам анализа относят:

- 1. титриметрический;
- 2. гравиметрический;
- 3. кондуктометрический;
 - 4. потенциометрический.

40. Эриохром черный Т применяется в комплексонометрическом титровании:

- 1. в качестве флуоресцентного индикатора;
- 2. в качестве металлохромного индикатора;
- 3. в виде сухой смеси индикатора с NaCl (1:200);
- 4. при определении тиоцианат-ионов

41. Ионная сила 0,1 М раствора хлорида натрия равна:

- 1. 0,1 M;
- 2. 0,01 M;
- 3. 0,001 M;
- 4. 0,0001 M

42. Ионная сила 0,01 М раствора сульфата цинка равна:

- 1. 0,04 M;
- 2. 0,03 M;
- 3. 0,02 M;
- 4. 0,01 M.

43. Наиболее слабой кислотой является та, у которой показатель константы кислотности равен:

- 1. 3,8 (муравьиная кислота);
- 2. 4,76 (уксусная кислота);

- 3. 7,6 (хлорноватистая кислота);
- 4. 3,2 (фтороводородная кислота).

44. Выпаривание растворов проводят с целью

- 1. Повышения концентрации раствора;
- 2. Понижения концентрации раствора;
- 3. Отделения катионов от анионов

45. Операцию центрифугирования проводят с целью

- 1. Отделения осадка от раствора;
- 2. Отделения катионов от анионов;
- 3. Разделения катионов на аналитические группы

46. К классификации методов качественного анализа не относится метод анализа

- 1. катионов
- 2. анионов
- 3. растворение осадка

47. В качественном анализе преимущественно проводят реакции

- 1. с растворами электролитов
- 2. с неэлектролитами
- 3. аппаратным методом

48. При попадании порошкообразного хлорсодержащего средства на участок кожи его обрабатывают

- 1. водой с мылом, 2% натрия гидрокарбонатом
- 2. водой с мылом ,2% кислотой борной
- 3. 2% натрия гидрокарбонатом
- 4. 1% калия перманганатом

49. Режим дезинфекции аптечной посуды бывшей в употреблении:

- 1. 3% перекись водорода, 80 минут
- 2. 6% перекись водорода, 80 минут
- 3. 5 % моющее средство, 60 минут

4. 1% калия перманганат, 60 минут

50. Реагент для подтверждения подлинности лекарственных средств, содержащих фенольный гидроксил

- 1. хлорид железа (III)
- 2. сульфат меди (II)
- 3. серебра нитрат
- 4. бария хлорид

№ Вопроса	Ответ						
1	1	16	1	31	2	46	3
2	4	17	1	32	2	47	1
3	3	18	4	33	2	48	1
4	4	19	1	34	1	49	1
5	3	20	1,2,3	35	2	50	1
6	1	21	2	36	1		
7	2	22	2	37	2		
8	2	23	1,3	38	2		
9	3	24	2	39	3,4		
10	3	25	1,2,3	40	2,3		
11	1	26	1,2	41	1		
12	3	27	1,3	42	1		

13	2	28	2,3	43	3	
14	4	29	2,3	44	1	
15	4	30	1,2	45	1	

Фонд оценочных средств промежуточной аттестации

Вопросы к экзамену по дисциплине: «Аналитическая химия и техника лабораторных работ»

- 1. Специфичность аналитических реакций. Условия выполнения реакций.
- 2. Чувствительность. Факторы, влияющие на чувствительность. Реактивы. Частные, специфические, групповые.
- 3. Классификация ионов. Кислотно-основная классификация. Методы качественного анализа. Дробный и систематический анализ.
 - 4. Катионы I аналитической группы. Общая характеристика. Свойства катионов натрия, калия, аммония.
- 5. Реактивы. Условия осаждения ионов калия и натрия в зависимости от концентрации, реакции среды, температуры. Применение их соединений в медицине.
- 6. Катионы II аналитической группы. Общая характеристика. Свойства катионов серебра, свинца (II). Групповой реактив. Его действие. Реактивы. Значение соединений катионов II группы в медицине.
- 7. Свойства катионов бария, кальция. Общая характеристика. Групповой реактив. Его действие. Реактивы. Значение соединений катионов III группы в медицине. Понятие о произведении растворимости. Условия осаждения и растворения малорастворимых соединений в соответствии с величинами ПР.
- 8. Катионы IV аналитической группы. Общая характеристика. Групповой реактив. Реактивы Свойства катионов IV аналитической группы (алюминия, цинка). Значение и применение гидролиза и амфотерности в открытии и отделении катионов IV группы.
- 9. Общая характеристика. Свойства катионов железа (II, III), марганца, магния. Групповой реактив. Окислительно-восстановительные реакции и использование их при открытии и анализе катионов V группы. Применение соединений катионов V аналитической группы в медицине.
- 10. Общая характеристика. Свойства катиона меди II. Реакции комплексообразования. Использование их в открытии катионов VI группы. Групповой реактив. Его действие. Систематический анализ смеси катионов I- VI группы. Применение соединений меди в медицине.
 - 11. Общая характеристика анионов и их классификации. Анионы окислители, восстановители, индифферентные.

Предварительные испытания на присутствие анионов-окислителей и восстановителей. Групповые реактивы на анионы и условия их применения: хлорид бария, нитрат серебра.

- 12. Групповой реактив и характерные реакции на анионы І группы: сульфат-ион, сульфит-ион, тиосульфат-ион, фосфат-ион, хромат-ион, карбонат-ион, гидрокарбонат-ион, оксалат-ион, борат-ион. Применение соединений в медицине.
- 13. Групповой реактив и характерные реакции на анионы II группы: хлорид-ион, бромид-ион, иодид-ион, тиоцианид-ион. Применение в медицине.
- 14. Групповой реактив и характерные реакции на анионы III группы: нитрат-ион, нитрит-ион. Применение в медицине. Анализ смеси анионов трех аналитических групп.
- 15. Основные сведения о титриметрическом анализе, особенности и преимущества его. Требования к реакциям. Точка эквивалентности и способы ее фиксации. Индикаторы. Классификация методов.
- 16. Способы выражения концентрации рабочего раствора Растворы с молярной концентрацией эквивалента, молярные растворы. Титр и титрованные растворы. Растворы с титром, приготовленным и титром установленным.
- 17. Исходные вещества. Требования к исходным веществам. Понятие о поправочном коэффициенте. Стандарт-титр (фиксаналы). Прямое, обратное титрование и титрование заместителя. Вычисления в титриметрическом методе. Измерительная посуда: мерные колбы, пипетки, бюретки и другие.

Основное уравнение метода. Рабочие растворы. Стандартные растворы. Индикаторы. Ацидиметрия и алкалиметрия.

- 18. Порядок и техника титрования. Расчеты. Использование метода при анализе лекарственных веществ.
- 19. Перманганатометрия. Окислительные свойства перманганата калия в зависимости от реакции среды. Вычисление эквивалента перманганата калия в зависимости от среды раствора. Приготовление раствора перманганата калия. Исходные вещества в методе перманганатометрии. Приготовление раствора щавелевой кислоты. Определение молярной концентрации эквивалента и титра раствора перманганата калия по раствору щавелевой кислоты. Роль среды и температуры при этом. Использование метода для анализа лекарственных веществ.
- 20. Йодометрия. Химические реакции, лежащие в основе йодометрического метода. Приготовление рабочих растворов йода и тиосульфата натрия, дихромата калия. Условия хранения рабочих растворов в методе йодометрии. Крахмал как индикатор в йодометрии, его приготовление. Использование метода йодометрии в анализе лекарственных веществ.
 - 21. Метод нитритометрии. Рабочий раствор. Стандартный раствор. Фиксирование точки эквивалентности с

помощью внешнего и внутренних индикаторов. Условия титрования. Примеры нитритометрического определения. Метод броматометрии. Рабочий раствор. Стандартный раствор. Химические реакции, лежащие в основе метода, применение метода. Условия титрования. Способы фиксации точки эквивалентности. Применение в фармацевтическом анализе.

- 22. Аргентометрия
- 23. вариант Мора титрант, среда, индикатор, переход окраски, основное уравнение реакции, применение в фармацевтическом анализе
- 24. *вариант Фаянса* основное уравнение, условия титрования, использование адсорбционных индикаторов: бромфенолового синего, эозината натрия для определения галогенидов, титрант, среда, индикатор, уравнения реакции, определение точки эквивалентности.
 - 25. вариант Фольгарда уравнение метода, условия титрования, индикатор.
- 26. Тиоцианометрия-титрант, среда, индикатор, переход окраски, основное уравнение реакции, применение в фармацевтическом анализе.
- 27. Определение точки эквивалентности в аргентометрическом методе. Индикаторы. Применение метода в фармацевтическом анализе.
- 28. Общая характеристика метода комплексонометрии. Определение точки эквивалентности. Индикаторы. Влияние кислотности растворов. Буферные растворы. Использование метода при анализе лекарственных веществ.
- 29. Классификация физико-химических методов. Оптические, хроматографические и электрохимические методы анализа.
 - 30. Фотоколориметрический и рефрактометрический методы анализа. Формулы расчета.
- 31. Классификация методов. Обзор оптических, хроматографических и электрохимических методов. Рефрактометрия. Расчеты

Критерии оценки

Оценка 5 (отлично) выставляется обучающемуся, обнаружившему всестороннее систематическое знание учебного материала, умение свободно ориентироваться в заданиях, приближенных к будущей профессиональной деятельности в стандартных и нестандартных ситуациях, усвоившему взаимосвязь основных понятий дисциплины и их значение для приобретаемой специальности.

Оценка 4 (хорошо) выставляется обучающемуся, обнаружившему полное знание учебного материала, успешно выполнившему заданиях, приближенные к будущей профессиональной деятельности в стандартных ситуациях, показавшему систематический характер знаний по дисциплине, способность к их самостоятельному пополнению и обновлению в ходе дальнейшей учебы и профессиональной деятельности.

Оценка 3 (удовлетворительно) выставляется обучающемуся, обнаружившему знание основного учебного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по специальности, справляющемуся с выполнением заданий, предусмотренных программой дисциплины, обладающему необходимыми знаниями, но допустившему неточности.

Оценка 2 (неудовлетворительно) выставляется обучающемуся, если обучающийся имеет разрозненные, бессистемные знания, не умеет выделять главное и второстепенное, беспорядочно и неуверенно излагает материал.

	Качественная оценка уровня подготовки			
Процент результативности (правильных ответов)	балл (отметка)	вербальный аналог		
		отлично		
		хорошо		
		удовлетворительно		
менее 70		неудовлетворительно		